Tag Archives: clash detection

Laser Technology Makes Traditional Field Measuring of As-Builts Obsolete

Ask architects what they dislike most about their jobs and many will agree that taking field measurements ranks pretty high. 

 

Measuring as-built conditions takes architects out of the office and away from the work they enjoy most and what makes them money. And many times, traditional measuring methods are inaccurate and time consuming – and that’s when the environment is simple!

 

When there are difficult conditions, taking measurements can be next to impossible. And not to mention, inevitably, there is always something missed or the field notes don’t quite match up to the rough sketches done onsite. 

 

Today, there is a better answer to field measuring existing conditions in the form of laser technology.

 

LandAir Surveying utilizes 3D laser scanning and laser measuring technologies to provide a modern solution to the task of field measuring as-built conditions. Depending on the level of complexity, amount of detail needed, deliverables required and timeframe, we can dictate which laser technology is right for each individual project. 

 

The power of laser scanning

Laser scanning is the surveying technology of choice when it comes to difficult environments.  Historic buildings, exterior elevations, heavy MEP conditions and the need for very precise measurement data capture are all examples of when laser scanning technology should be used.

 

Laser scanning generates millions of data points to create a 3D image referred to as a “point cloud.” The point cloud can be measured and viewed in any direction, which virtually puts you back at the work site.

 

The point cloud is then utilized to generate AutoCAD drawings, building information models (BIM), or used as a design tool itself.

 

The speed of laser measuring

Our advanced laser measuring technology allows for exact measurements and real time data capture of critical data and building geometry. The use of wireless laser range finders and a remote BIM workstation reduces data collection time, increases accuracy and eliminates rework.

 

Models and AutoCAD files can be generated onsite and in real time, as well as quality control and field verification, which greatly reduces the amount of work required back in the office.

 

Here are just a few examples of how laser scanning and measuring have provided more accurate information while saving valuable time and resources in the field:

 

Project Case Study: Historic Hotel Renovation

A historic hotel built in the 1930’s with no existing documents and in a bad state of disrepair was scheduled to be renovated into a modern boutique hotel. 

 

LandAir utilized both 3D laser scanning and laser measuring technology to provide a point cloud, TruView, fly-through video and AutoCAD drawings. Laser scans were performed on the exterior of the hotel to provide elevation drawings. 

 

The eight-story hotel’s exterior was brick and adorned with many architectural details. The laser scan was able to capture all of the exterior data measurements and provide additional helpful details that were viewed in the point cloud including sidewalks, tree clearances and parking lot details. 

 

The laser scan was continued into the lobby and through the first floor of the hotel, helping tie together the laser scan information and laser measuring software. Due to the nature of the construction of the hotel, each one of the over 140 rooms had to be individually measured and floor plan documents created. 

 

With LandAir’s workflow design and remote BIM workstation, QA/QC was able to be done on the rooms in the field and the irregularly shaped rooms were verified on site.

 

Project Case Study: Big Box Retail Conversion

A grocery store and two adjacent in-line stores had gone dark and were going to be renovated to accommodate a new tenant. The option on the building was expiring and there were no existing documents to help determine if the space would work for the future tenant. 

 

LandAir utilized laser measuring technology to provide AutoCAD documents and a 3D model to the designer and tenant in less than two days. The proposed design and tenant requirements were compared to existing conditions and the project was able to move forward in the required timeframe.

 

Project Case Study: Pedestrian Bridge Addition

A pedestrian bridge was proposed to be built over an extremely busy street in a large Metropolitan downtown connecting a hotel and parking deck. No drawings were available and the proposed bridge was four stories above the street, making traditional measuring very difficult and dangerous. 

 

LandAir conducted a 3D laser scan of the exterior of the hotel and the existing parking deck.  The street scape conditions, power lines, traffic signals and building tie-in points were all measured accurately and safely from the laser scanner. 

 

AutoCAD drawings, a TruView and a video fly-through were provided for the project team. The point cloud fly-through provided a 3D visualization from any vantage point of the proposed bridge.

 

This helped the hotel determine how the sight views of rooms would be affected and allowed for inspectors, DOT officials and the downtown development authority to understand the impact of the proposed bridge. 

 

Project Case Study: Mall and Food Court Renovation

A three-story open atrium food court was to be redesigned and new tenants added to the mix. 

 

The existing documents were not a true representation of existing conditions as, over the years, there had been changes and alterations to the space. Additionally, the height and design of the atrium had many features that were difficult to measure.

 

LandAir laser scanned the atrium and surrounding spaces to provide a 3D model and clash detection for the proposed design changes. Laser measuring was also utilized to produce exact as-built documents for the surrounding spaces so that the mall owner could provide drawings for future tenants to build out their stores.

 

Each project has its own challenges and needs. LandAir uses the latest laser technologies to improve these projects and put an end to one of the most painstaking tasks in construction: field measuring.

Are you planning to attend ICSC RECon 2013 in Las Vegas next month? If so, e-mail me at mdorsett@lasurveying.com. We would love to meet you there!

###

 

Mitch Dorsett has over 15 years in the building and construction industry and serves as director of business development for LandAir Surveying. Mitch is rapidly becoming an expert in 3D data capture and virtual design and construction, having attended and represented LandAir’s laser scanning capabilities at SPAR, RTC and Autodesk University in 2012. Contact him at mdorsett@lasurveying.com or visit www.landairsurveying.com

The Next 3D Scanning Frontier: Transportation BIM and Augmented Reality

As I stand back and look at where 3D laser scanning has led us as a company, I am both pleased and confident that the world of 3D virtual design and engineering is healthy and growing fast.

I recently met some truly amazing people from all over America and Europe who are doing some very forward thinking things with 3D virtual reality in both transportation BIM systems and augmented reality. Here’s a snapshot of what I saw:

Transportation BIM Systems

I was in Washington, DC, a few weeks ago speaking at a large corporate meeting and had the opportunity to see a fascinating presentation on the San Francisco Bay Bridge construction.

The construction cost will come in around $7 billion (yes, billion). The metrics are staggering, but there are four major construction firms working on the project.

Cal Trans has scanner crews scanning the progress on a weekly basis. Because of this, there was room in the budget and the available technology to do real time clash detection of the existing and proposed construction.

Because the bridge was designed in 3D (really in 5D), engineers were able to save big bucks on relatively simple components. For example, the 3D scan allowed them to get real time views from the proposed security cameras underneath the bridge. As a result, the actual number of cameras was cut in half, saving several million dollars.

Crews also used 4D (time) clash detection to view when a new component of the bridge was being constructed while an existing component was still in place. The 4D BIM model, when clashed against the existing model at that moment in the construction sequence, showed that there were interferences in temporary construction items.

Though the clashes would not have interfered with the final design, they did interfere with the interim design and would have slowed construction. This knowledge allowed the designers and contractors to make modifications to the sequences before there was an actual problem.

Just a few years ago, this capability would have been unheard of!

One of the more astonishing things I saw was a 5D construction sequence video that showed the bridge’s proposed construction slide bar and dollars spent on overtime as the bridge was coming out of the ground or water. This enabled you to compare construction costs to the bridge’s progress. At this same time, the 3D graphic was color-coded to show the four separate contractors and their workflows.

This all sounds complicated – and it was – but through the 3D engineering process, you could view the time estimates, add the construction dollars, and come to a very natural conclusion as to what was actually taking place. You could confirm that one contractor had finished his new section before another section was tied into it.

A 3D video showing a major component – like how the cabling system would be threaded through the bridge to provide the final structural support – was also very intriguing to watch.

Augmented Reality

This may be one of the biggest and best changes that I foresee coming to the construction industry.

Augmented Reality (AR) is a live view of a real-world environment whose elements are augmented by computer generated sound, video, graphics or GPS data. If you consider that most new construction will first be built by engineers and designers in 3D in computers, then you may see where we are going with this.

With the base designed in 3D, you can then place a “target” in a construction zone. A target for augmented reality can really be anything as long as a tablet or cell phone can recognized it as graphic signal to launch 3D BIM programs.

These targets are used to orient the tablet to the exact same design point as where the construction is occurring on the ground. When targets are scanned with a tablet, the original design for that exact spot of construction is displayed. As the tablet is moved around this area, you can view the construction in 3D at a specific location.

Here’s an excellent example: Assume that you have a three-sided, multi-story concrete opening for a proposed staircase. By scanning the target placed in that area, construction workers can see on their iPad or Android tablet exactly what the finished product will look like. Not just a flat drawing on 600 sheets of blue lines, but the 3D model of how it will actually fit into the opening.

And remember: the world is international and these projects are under construction all over the world. By doing this, we just transcended the language barrier. We just solved the problem of expert tradesmen who are great at their craft but may not read details on blueprints that well. We just got a crew of 2-5 construction workers from a point of unknown to a point where everyone has a perfect mental picture of what is going to be constructed. That’s a huge step!

One of the oldest sayings for any worthwhile project is, “Begin with the end in mind.” What a great way of accomplishing this.

As a testimony to how well this is working, many construction companies have been rolling out flat screen computers onsite to show superintendents actual BIM models by sequence. All throughout the day, they are used over and over by the workers who are building bridges, buildings, and infrastructure around the world.

These rolling 3D models are helping to get projects constructed right the first time. They are preventing construction problems and saving big money. Very soon, I believe that all of this will be done with either special glasses or projection screens.

Currently, the only obstacle slowing the process is having a way to orient a 3D BIM model real time inside of a building. Outside, it can be done with GPS. But inside, it is more challenging.

However, augmented reality will very quickly make paper plans obsolete. I have seen it in too many places and have seen the benefits. It is coming and will soon be a standard. All of the major construction companies are embracing this technology.

Another real use of augmented reality will be in the operations of the finished building. The technology already exists to allow a maintenance worker to go up to a motor or valve (or any piece of equipment that has a target) and scan it with his tablet or phone.

This opens up a computer database so that he can see the last maintenance schedule and the internal parts of the machine. If he services the machine, his data is automatically sent to the company database and is available for anyone to review. Or, if a repair is needed, he can launch a video of how to take apart the machine and replace any part he needs.

This brings the power of the “owner’s manual” and the entire knowledge stored in the computers running the facility in real time 3D to the exact point it is needed. Imagine the implications if you own a complex manufacturing facility.

In just the past seven years, I have seen strides that were only imagined 10 years ago. But today, it’s all happening – and there are very creative people all over the country working on even more and more innovations. It’s an exciting industry to be working in!

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com,  tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.

3D Laser Scanning: The New Industry Standard

When we first started laser scanning back in 2005, we replaced some of our total station surveying equipment with scanning technology. As much as anything, this was a great way for us to learn how to use the technology and understand its capabilities and limitations.

Early on, much of the work we did involved transportation projects and large complicated intersection surveys. There were many immediate benefits. For one, our surveyors were no longer put out into traffic and in harm’s way.

Another benefit was that we didn’t have to drive across town or across the state just to check on a few ambiguous points in a survey. Instead, we could just go back and look at the point cloud.

Today, in 2012, the entire world of architectural and engineering design and construction has changed. While before we had to convince clients of the benefits of using laser surveys, we now have a growing client base that simply will not consider starting a project without one.

In addition to providing accurate spatial information to civil engineers, plant designers, architects, contractors – and even insurance companies and crime scene investigators – laser scanning saves both time and money.

The truth is that in very complicated environments – like a mechanical heating and air conditioning plant room or a baggage room in an airport – the cost of scanning is nominal when compared to the total cost of the project.

Here are four primary reasons 3D laser surveys, or high-definition scanning, is quickly becoming the new industry standard when it comes to making precise measurements in complicated environments:

Reason #1: Scanner Speed

The speed of scanning has changed dramatically compared to what it was just seven years ago.

The first scanner we purchased (and still use today) took one hour for a 360-degree spherical orbit. Today, with our current scanners, it takes just six minutes.  This speed enables us to take many more scan set-ups than we used to take.

With our phase-based high speed scanner, we can now get 40 to 60 scans per day, which is very adequate to cover a large two-story mechanical room. To get the same amount of scans seven years ago would have taken a week.

In areas like these, it is the detail we look for, not the range. In extremely complicated areas, we make a set of scans on all sides. This data is invaluable to designers because it allows them to avoid interferences that often occur in these types of areas.

Reason #2: Software Improvements

Improved software programming has also contributed to the widespread acceptance of scanning technology.

I remember talking to clients back in 2005 and our message was something like this, “We will scan for you, then give you a 2D deliverable set of drawings that you can use to design your project.” When they would ask if they could use the point cloud in their design, our answer was always the same: “Yes, but you will have to buy $10,000 worth of software.”

As you can probably imagine, this was not an easy sell.

Fortunately, today Bentley, AutoCAD and Revit all have point cloud engines in them. The difference between an engine and a viewer is that we can now load a point cloud into an “engine” for a client and they can use the data in the design without having to purchase expensive “point cloud” software.

In fact, one of the takeaways from a scanning conference I recently attended was that all of the major software providers are moving to full 3D software design systems. They finally understand what we have known for years. Why would you survey in 3D, flatten the data to 2D, design in 2D then build in 3D? It just doesn’t make sense.

Reason #3: Clash Detection

This alone is worth the cost of a 3D laser survey.

Consider that if a project is modeled in the design phase, the completed final design – including the MEP systems, air handling systems, structural system and all of the architectural design – can be placed within the point cloud and clash detected. Anything that interferes with another system can be seen immediately and corrected before construction.

This is huge! What prudent engineer, designer or contractor would not want this advantage?  How important would this be to an owner?

Reason #4: TrueView or 360-Degree Spherical Photography

This technology has also improved quite a bit in the last seven years. When we first started scanning, we were fascinated with the fact that scanners could take photographs of the surrounding area, and then take that photographic data and overlay it with the scan data to make general measurements to the environment.

Unfortunately, back then the on-board camera was not as good as we had hoped and sometimes the pictures would come out octagonal and disjointed. As the process became more refined, we were able to mount a high resolution camera on the scanner and produce a crystal clear, color spherical photograph of the site.

This is a big step because it allows you to view a site from any scan set up. You can add text and information to the photographs and then e-mail a specific view to a client across the country or across the world. (In this case, some of our clients pay for our scanning fees with their savings in plane tickets!) This tool also enables clients to look out from the center of every scan and saves lots of time and discussion as to what is or is not located in the area of interest.

High definition scanning has quickly evolved from an emerging technology to an industry best practice when it comes to complicated projects. The construction process always includes many unknowns and the chance of design and construction errors is always high.

Why put yourself in the position of having to explain how a construction project was slowed down or over-budget because a laser scan was not the foundation of the project?

###

Tate Jones has over 40 years of experience in land and aerial surveying and was one of the country’s earliest adopters of 3D laser scanning technology. A nationally recognized expert in the field of 3D data capture, he has worked with hundreds of clients in the engineering, architectural and construction industries. Contact him at tjones@lasurveying.com,  tjones@3DLaserSurveys.com or visit www.3DLaserSurveys.com.